When Only EasyMock is used
Lets explore an example of using both EasyMock and Unitils through a code. Check the entire source in EasyMockOnlyTest source.
The text code(EasyMockService) is as follows. It contains selectList and insert methods and they call CollaboratorDao’s selectList and insert method. Compared with an example using Unitils, setCollaboratorDao method is required for test.

@Service("easyMockService")

public class EasyMockService {

 @Resource(name="collaboratorDao")

 private CollaboratorDao collaboratorDao;

 public void setCollaboratorDao(CollaboratorDao dao) {

 collaboratorDao = dao;

 }

 public List<BoardVO> selectList() throws Exception {

 List<BoardVO> result = collaboratorDao.selectList();

 return result;

 }

 public void insert(BoardVO vo) throws Exception {

 collaboratorDao.insert(vo);

 }

}

CollaboratorDao are the same.

public interface CollaboratorDao {

 List<BoardVO> selectList();

 void insert(BoardVO vo);

}

The test code can be written as in the following.

1. Junit will be used and therefore no separate declaration is required.

public class EasyMockTest {

 . . .

}

2. Declare the Mock target and test target as test fixture.

private CollaboratorDao mockDao;

private EasyMockService service;

3. In preparing test fixture, declare Mock and set mock to Service.
All these are handled in @Mock, @InjectIntoByType and @TestedObject above.

 @Before

 public void setUp() {

 mockDao = createMock(CollaboratorDao.class);

 service = new EasyMockService();

 service.setCollaboratorDao(mockDao);

 }

4. Define the method to mock.
This is to define the method related to the test target method in advance. Define the signature of the method, set the return value, if any, and use the date to carry out the test.

· If the method to mock has no return value, do as in the following.

 mockDao.insert(board);

 replay(mockDao);

· If the method to mock has the return value, do as in the following.

 expect(mockDao.selectList()).andReturn(Arrays.asList(new BoardVO(101), new BoardVO(102)));

 replay(mockDao);

5. Write a code that executes the method for testing and then checks the test.

 // Executes the method for testing .

 List<BoardVO> selectList = service.selectList();

 // Check the results.

 assertNotNull("Check if the test target has properly produced", selectList);

 assertPropertyLenientEquals("id", Arrays.asList(101, 102), selectList);

6. Finally, verify the mocked method.

 verify(mockDao);
